Classical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data

نویسنده

چکیده مقاله:

Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not yet been studied with random censoring in literature. Fitting and using exponential distribution on the range (0,∞), specially when the minimum observation in the data set is significantly large, will give estimates far from accurate. First we obtain the maximum likelihood estimates of the unknown parameters with their variances and asymptotic confidence intervals. Some other classical methods of estimation such as method of moment, L-moments and least squares are also employed. Next, we discuss the Bayesian estimation of the unknown parameters using Gibbs sampling procedures under generalized entropy loss function with inverted gamma priors and Highest Posterior Density credible intervals. We also consider some reliability and experimental characteristics and their estimates. A Monte Carlo simulation study is performed to compare the proposed estimates. Two real data examples are given to illustrate the importance of the location parameter.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating E-Bayesian of Parameters of two parameter Exponential Distribution

‎In this study‎, ‎E-Bayesian of parameters of two parameter exponential distribution under squared error loss function is obtained‎. ‎The estimated and the efficiency of the proposed method has been compared with Bayesian estimator using Monte Carlo simulation‎. 

متن کامل

Bayesian Analysis of Randomly Censored Generalized Exponential Distribution

Abstract: This paper deals with Bayesian analysis of two-parameter generalized exponential distribution in proportional hazards model of random censorship. It is well known for two-parameter lifetime distributions that continuous conjugate priors for the parameters do not exist; we assume independent gamma priors for the scale and shape parameter. It is seen that the closed-form expressions for...

متن کامل

Bayesian Analysis of Type I Censored Data from Two - Parameter Exponential Distribution

The parameters of the two parameter exponential distribution are estimated in this article based on complete and Type-I censored samples from the Bayesian viewpoint. Bayes point estimates and credible intervals for the scale and location parameters are derived under the assumption of squared error loss function. An illustrative example is provided to motivate the proposed Bayes point estimates ...

متن کامل

Bayesian Prediction of future observation based on doubly censored data under exponential distribution

In many experiments about lifetime examination, we will faced on restrictions of time and sample size, which this factors cause that the researcher can’t access to all of data. Therefore, it is valuable to study prediction of unobserved values based on information of available data. in this paper we have studied the prediction of unobserved values in two status of one-sample and two-sample, whe...

متن کامل

Pitman-Closeness of Preliminary Test and Some Classical Estimators Based on Records from Two-Parameter Exponential Distribution

In this paper, we study the performance of estimators of parametersof two-parameter exponential distribution based on upper records. The generalized likelihood ratio (GLR) test was used to generate preliminary test estimator (PTE) for both parameters. We have compared the proposed estimator with maximum likelihood (ML) and unbiased estimators (UE) under mean-squared error (MSE) and Pitman me...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 30  شماره 2

صفحات  569- 602

تاریخ انتشار 2020-03

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023